Expression changes in arrestin β 1 and genetic variation in catechol-O-methyltransferase are biomarkers for the response to morphine treatment in cancer patients

HIROMICHI MATSUOKA1, TOKUZO ARAO2, CHIHIRO MAKIMURA1, MASAYUKI TAKEDA1, HIDEKI KIYOTA1, JUNJI TSURUTANI1, YOSHIHIKO FUJITA2, KAZUO MATSUMOTO2, HIDEHARU KIMURA2, MASATOMO OTSUKA3, ATSUKO KOYAMA4, CHIYO K. IMAMURA5, YUSUKE TANIGAWARA5, TAKEHARU YAMANAKA6, KYOKO TANAKA7, KAZUTO NISHIO2 and KAZUHIKO NAKAGAWA1

Departments of 1Medical Oncology and 2Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511; Departments of 3Palliative Care and 4Psychosomatic Medicine, Sakai Hospital, Kinki University Faculty of Medicine, Osaka 590-0132; 5Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, Tokyo 160-8582; 6Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka 811-1395; 7Department of Oncology Nursing, School of Nursing, Osaka Prefecture University, Habikino Campus, Osaka 583-8555, Japan

Received November 1, 2011; Accepted December 5, 2011

DOI: 10.3892/or.2012.1660

Abstract. Genetic differences in individuals with regard to opioid-receptor signaling create clinical difficulties for opioid treatment; consequently, useful pharmacodynamic and predictive biomarkers are needed. In this prospective study, we studied gene expression changes in peripheral blood leukocytes using a microarray and real-time RT-PCR analysis to identify pharmacodynamic biomarkers for monitoring the effect of morphine in a cohort of opioid-treatment-naïve cancer patients. We also examined genetic variations in opioid receptor µ 1 (OPRM1, 118A → G) and catechol-O-methyltransferase (COMT, 472G → A) to evaluate predictive biomarkers of the treatment outcome of morphine. The plasma concentration of morphine was measured using a liquid chromatography-tandem mass spectrometry method. Microarray analysis revealed that the mRNA expression levels of arrestin β 1 (ARRB1) were significantly down-regulated by morphine treatment. Real-time RT-PCR analysis against independent samples confirmed the results (P=0.003) and changes during treatment were negatively correlated with the plasma morphine concentration (R=-0.42). No correlation was observed between the genotype of OPRM1 and morphine treatment; however, the plasma concentration of morphine and the required dose of morphine were significantly lower for the A/A genotype of COMT (vs. A/G+G/G, P=0.008 and 0.03). We found that changes in the expression of ARRB1 may be a novel pharmacodynamic biomarker and the COMT 472G → A genotype may be a predictive biomarker of the response to morphine treatment.

Introduction

Pharmacogenetic, pharmacokinetic and pharmacodynamic variations among individuals result in a wide variety of responses to pain sensation and to analgesics; therefore, intensive investigations of biomarkers for opioid treatment have been performed to improve the effectiveness of morphine treatment (1).

The opioid receptors are G-protein coupled receptors (GPCRs), and three types of receptors µ, δ and κ-opioid receptors (OPRM1, OPRD1 and OPRK1) are known to serve as receptors for morphine (2). Among them, OPRM1 generated the main analgesic effect induced by morphine in a knock-out study performed in mice (3). Agonists for opioid receptors induce the activation of GPCRs, triggering the activation of various downstream molecules (2). A regulator of the G-protein signaling (RGS)-protein family negatively regulates opioid-receptor signaling by accelerating the deactivation of G proteins, and the regulators RGS2 and RGS9 are thought to be involved in resistance to morphine (4-6). In addition, G-protein coupled receptor kinase (GRK) phosphorylates the opioid receptors, leading to the binding of arrestin β 1 and 2 (ARRB1 and 2) to the opioid receptors (7). Thus, GRKs and ARRBs negatively regulate opioid-receptor signaling and are thought to be involved in resistance to morphine (8,9). To identify pharmacodynamic biomarkers that are capable
of monitoring the drug effect, we examined the gene expression changes in opioid signaling-related molecules using a microarray and real-time RT-PCR analysis in peripheral blood leukocytes (PBLs).

Meanwhile, genetic variants associated with varying pain sensitivity and responses to morphine are thought to be potential biomarkers for predicting the outcome of morphine treatment (1,10). In this study, we also evaluated two functional genetic variants,

\[\text{OPRM1} \] 118A→G and catecholamine-O-methyltransferase gene (\n
\[\text{COMT} \]) 472G→A (also known as Val158Met). The 118A→G variant of \n
\[\text{OPRM1} \] leads to a change in amino acids at position 40, affecting a putative glycosylation site of the receptor and biologically altering receptor activity (1). The enzyme activity of \n
\[\text{COMT} \] is genetically defined as high in G/G, intermediate in G/A and low in A/A, and its genotype is thought to be associated with the effect of opioid-signaling (11).

In this prospective study, we examined gene expression to explore possible pharmacodynamic biomarkers and to evaluate the use of functional genetic variants as predictive biomarkers of the response to morphine treatment in a cohort of opioid-treatment-naïve cancer patients.

Materials and methods

Patients and samples. This prospective study was conducted between 2009 and 2011 at the Kinki University Faculty of Medicine and Sakai Hospital, Kinki University Faculty of Medicine. Clinico-pathological features including age, gender, ECOG performance status (PS) and type of primary malignant neoplasm were recorded. Morphine treatment was performed according to the standard method including titration (NCCN Guidelines™, Adult Cancer Pain). The required doses of morphine on Day 1 and on Day 8 are thought to be associated with the results of titration and the dose in the stationary phase, respectively.

PBL samples were obtained at baseline (pretreatment) and on Day 1 for the gene expression analyses. PBL samples for DNA were obtained at baseline. To measure the plasma concentrations of morphine, blood samples were collected on Days 1 and 8. The separated plasma were stocked at -80°C until use. The present study was approved by the institutional review boards of both centers and written informed consent was obtained from all the patients.

RNA extraction. Each 2.5-ml whole blood sample was stored in a PAX gene Blood RNA tube (Qiagen, Hilden, Germany). RNA was extracted according to the manufacturer’s protocol (Qiagen). Then, massively containing globin mRNA was removed using a biotinylated Globin-capture oligonucleotides-based method and the GLOBINclear™ kit (Ambion, Austin, TX). The quality and quantity of RNA obtained from these samples were verified using a NanoDrop2000 spectrophotometer (Cole-Parmer, Vernon Hills, IL).

Real-time reverse transcription PCR. The methods used in this section have been previously described (12). \n
\[\text{GAPD} \] was used to normalize the expression levels in the subsequent quantitative analyses. The primers used for real-time RT-PCR were purchased from Takara (Otsu, Japan) as follows: \n
\[\text{OPRM1} \] forward, 5’-TCA ATG TCT GCA ACT GGA TCC TC-3’ and reverse, 5’-CAC TGG CAT AAT GAA GGC GAA G-3’; \n
\[\text{OPRD1} \] forward, 5’-CTG GGC AAC GTG CTT GTC A-3’ and reverse, 5’-CAT CAG GTA CTT GGC ACT CTG GAA-3’; \n
\[\text{OPRK1} \] forward, 5’-CAG TCC ACG TGC TCT TAC AGC GTT A-3’ and reverse, 5’-CCC TTG TGG GCA CAT ACA GCT AC-3’; \n
\[\text{ARRB1} \] forward, 5’-GAG AAC GAG ACC CCA GAA ACC GA TAT ACC CA-3’; and reverse, 5’-ACC AAC ATG GCT GCC AGC ACC GCC GCC ACC CTA TCT GG-3’.

Microarray analysis. The microarray procedure was performed according to the Affymetrix protocols (Santa Clara, CA), as described previously (13). Briefly, cRNA was synthesized using the GeneChip® 3’Amplification Reagents One-Cycle cDNA Synthesis Kit (Affymetrix). The labeled cRNAs were then purified and used for the construction of the probes. Hybridization was performed using the Affymetrix Gene Chip HG-U133 Plus 2.0 array for 16 h at 45°C. The signal intensities were measured using a GeneChip® Scanner 3000 (Affymetrix) and converted to numerical data using GeneChip Operating Software, Ver. 1 (Affymetrix).

Genotyping. The genotype was evaluated for \n
\[\text{OPRM1} \] 118A→G (rs1799971, p.Asn40Asp) and \n
\[\text{COMT} \] 472G→A (rs4680, p.Val158Met). Genomic DNA isolated from blood samples using a QIAamp® DNA Blood Mini Kit (Qiagen) were amplified with the following primers: for \n
\[\text{OPRM1} \] forward, 5’-AAG TCT CGT CGG TTC TTC CC-3’ and reverse, 5’-GGT TCC GAA GAG CCC CAC GC-3’; and for \n
\[\text{COMT} \] forward, 5’-GAT TCA GGA GCA CCA GCC CTC C-3’ and reverse (intronic), 5’-CAG TGA GGC TGG TGA TAG TG-3’. Each PCR reaction was performed in a 20-µl volume containing 20 ng of template, 0.5 µM of each primer, AmpliDirect Plus (Shimadzu Corp., Kyoto, Japan) and 0.5 units of NovaTaq™ DNA Polymerase (Merck, Darmstadt, Germany). The amplification was performed for 35 cycles (95°C for 30 sec, 60°C for 30 sec and 72°C for 45 sec). The resulting PCR fragments consisting of 320 bp (\n
\[\text{OPRM1} \]) and 210 bp (\n
\[\text{COMT} \]) were directly sequenced with the corresponding forward and reverse primers, respectively.

Measurement of plasma concentration of morphine. The plasma concentration of morphine was measured using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Morphine was purchased from Daiichi Sankyo Co., Ltd. (Tokyo, Japan). Imipramine, an internal standard (IS), was obtained from Sigma-Aldrich (St. Louis, MO, USA). Pretreatment of the plasma samples was performed using protein precipitation. Briefly, 100 µl of plasma was mixed with 250 µl of IS solution (1 ng/ml imipramine in methanol). After vortexing (30 sec) and centrifugation (13,000 rpm, 5 min), the supernatant was directly analyzed using an autosampler. An
LC-MS/MS device was equipped with an Acquity UPLC (Ultra Performance LC) system and a Xevo TQ MS (Waters, Milford, MA, USA). Chromatographic separations were obtained under gradient conditions using an ACQUITY UPLC BEH C18 Column (100 mm x 2.1 mm ID, 1.7-µm particle size; Waters). The mobile phase consisted of eluent A (10 mmol/l ammonium formate) and eluent B (methanol). The flow rate was 0.5 ml/min and the gradient was from 2 to 60% B in 3.5 min, then an increase to 98% B in 0.5 min, holding at 98% B for 1 min and resetting to the initial conditions. The total run time was 8.5 min per sample. The column temperature was 45°C, the sample temperature was 10°C and the injection volume was 5 µl. The retention times of morphine and imipramine (IS) were 1.69 and 4.31 min, respectively. The mass spectrometer was operated in a positive electrospray mode. The capillary voltage was 0.5 kV and the desolvation temperature was 500°C. The multiple reaction monitoring mode detected morphine and imipramine (IS) as follows: transitions, 286.4→152.3 and 281.2→86.0; cone voltages, 42 and 28 V; collision energies, 48 and 16 V, respectively. The chromatographic data were acquired and analyzed using MassLynx software, equipped with QuanLynx (Waters). Standard curves were prepared for a concentration range of 0.5-50 ng/ml for morphine. The inter- and intra-day variabilities in precision (expressed as the coefficient of variation) for morphine ranged from 4.2 to 7.7% and from 4.4 to 4.7%, respectively. The average accuracies for morphine were between 100.4 and 106.1%.

Statistical analysis. Differences between groups were analyzed using the Student’s t-test or the Fisher’s exact test. A P-value of <0.05 was considered statistically significant. All analyses were performed using JMP (SAS Institute, Cary, NC). A microarray analysis was performed using BRB-Array Tools software, Ver. 3.6.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html), as described previously (13,14).

Results

Patient results. A total of 48 patients with opioid-treatment naïve and histologically confirmed malignant neoplasms who were scheduled to undergo opioid treatment were evaluated in this study (Fig. 1A). All 48 patients and a total of 96 samples (baseline and Day 1) were evaluated in the gene expression analysis. Forty-one patients and samples were evaluated in the genotype analysis because the DNA samples were insufficient in 7 cases. The plasma concentration of morphine was determined for 47 samples on Day 1 and for 43 samples on Day 8.

The patient characteristics are summarized in Table I. The median age was 69 years (40-85 years); 25 patients were men and 23 patients were women. Sixty-seven percent of the patients had a PS of 0-2 and 42% had advanced lung cancer. The other primary tumors were 8 colorectal cancers, 5 gastric cancers, 4 unknown primary cancers, 2 pancreas cancers, 2 breast cancers, 2 gallbladder cancers, 1 renal cell carcinoma, 1 bladder cancer, 1 malignant lymphoma, 1 malignant pheochromocytoma and 1 skin cancer. The median required dose of morphine on Day 1 was 30 mg (20-90 mg), while that on Day 8 was 30 mg (20-120 mg).

Down-regulation of ARRB1 mRNA expression and morphine treatment. To identify pharmacodynamic biomarkers for monitoring the effect of morphine, we examined changes in gene expression during morphine treatment (baseline vs. Day 1) using a microarray analysis for 20 samples from 10 cases and validated the results using real-time RT-PCR for 76 samples from 38 cases, focusing on opioid receptor signaling. A schema for opioid receptor signaling is shown (Fig. 1B). The microarray analysis revealed that the mRNA expression levels of ARRB1 and GRK5 were significantly down-regulated by morphine treatment (P=0.01 and 0.001, Table II). Interestingly, down-regulated genes including ARRB1, GRK5 and RGS9 (P<0.05) are known as negative regulators of opioid receptor signaling. The gene expressions of the opioid receptors were not changed. To confirm these results, we examined the gene expressions of these genes including OPRM1, OPRD1,
MATSUOKA et al. ARRBI AND COMT IN MORPHINE TREATMENT

Figure 1. Schemas of study design and opioid receptor signaling. (A) Flow diagram of study. (B) Schema of opioid receptor signaling. OPRM1, D1 and K1 represent opioid receptor μ 1, δ 1 and κ 1, respectively; ARRBI and 2 represent arrestin β 1 and 2; GRK, G protein-coupled receptor kinase; RGS, regulator of G-protein signaling; G, G protein; p, phosphorylation.

Table II. Gene expression changes in opioid signal-related molecules during morphine treatment.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Microarray (n=10)</th>
<th>Real-time RT-PCR (n=38)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base line</td>
<td>Day 1</td>
</tr>
<tr>
<td>OPRM1</td>
<td>Opioid receptor, μ 1</td>
<td>10.8±1.6</td>
<td>10.9±1.4</td>
</tr>
<tr>
<td>OPRD1</td>
<td>Opioid receptor, δ 1</td>
<td>11.3±4.2</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td>OPRK1</td>
<td>Opioid receptor, κ 1</td>
<td>13.7±4.4</td>
<td>12.6±3.5</td>
</tr>
<tr>
<td>ARRBI</td>
<td>Arrestin β 1</td>
<td>123.7±40.2</td>
<td>101.0±30.9</td>
</tr>
<tr>
<td>ARRBI2</td>
<td>Arrestin β 2</td>
<td>1193.5±476.5</td>
<td>1158.3±317.6</td>
</tr>
<tr>
<td>GRK1</td>
<td>G protein-coupled receptor kinase 1</td>
<td>10.3±1.3</td>
<td>11.3±2.7</td>
</tr>
<tr>
<td>GRK4</td>
<td>G protein-coupled receptor kinase 4</td>
<td>11.2±3.6</td>
<td>10.9±2.5</td>
</tr>
<tr>
<td>GRK5</td>
<td>G protein-coupled receptor kinase 5</td>
<td>419.6±121.1</td>
<td>346.7±137.4</td>
</tr>
<tr>
<td>GRK6</td>
<td>G protein-coupled receptor kinase 6</td>
<td>464.4±87.5</td>
<td>457.3±120.8</td>
</tr>
<tr>
<td>RGS2</td>
<td>Regulator of G-protein signaling 2</td>
<td>5776.5±1845.2</td>
<td>5872.8±1847.0</td>
</tr>
<tr>
<td>RGS9</td>
<td>Regulator of G-protein signaling 9</td>
<td>26.7±16.5</td>
<td>17.6±7.9</td>
</tr>
</tbody>
</table>

Gene expression changes were examined using microarray and real-time RT-PCR. Peripheral blood leukocytes sampled during morphine treatment at baseline (pretreatment) and Day 1 (after treatment) were used for the analysis. *Comparisons between baseline vs. Day 1. The P-values were calculated using a t-test. **P<0.05. Data are shown as the average ± standard deviation.

OPRK1, ARRBI, ARRBI2, GRK5 and RGS9 using real-time RT-PCR in 38 independent cases. The mRNA expression level of ARRBI was significantly and reproducibly down-regulated by morphine treatment (P=0.003, Table II and Fig. 2A). This result strongly suggests that ARRBI may be a promising and pharmacodynamic biomarker of morphine.

Next, we evaluated whether the down-regulation of ARRBI was correlated with the plasma concentration of morphine or the required dose. A moderate and weak inverse correlation was observed between the down-regulation of ARRBI and the plasma concentration of morphine (R=-0.42, Fig. 2B) or the required dose of morphine (R=-0.19, Fig. 2C). The results suggest that a higher plasma concentration or a higher dose of morphine induces the significant down-regulation of ARRBI and the change in ARRBI expression may be useful as a monitoring marker for morphine, although further studies are necessary.

COMT genotype is involved in outcome of morphine treatment. To find predictive biomarkers of the treatment outcome of morphine, we performed a functional genotype analysis...
of OPRM1 118A→G (rs1799971, p.Asn40Asp) and COMT 472G→A (rs4680, p.Val158Met). The treatment outcome of morphine was examined based on the plasma concentration of morphine (Days 1 and 8) and the required dose (Days 1 and 8) according to genotype. No correlation was observed between the OPRM1 118A→G genotype and the plasma concentration or the required dose of morphine (Table III). However, the plasma morphine concentration on Day 1 was significantly lower in patients with the A/A genotype of COMT, compared with those with the A/G+G/G genotypes (A/A: n=4, 8.7±4.0 ng/ml; G/A: n=18, 11.9±6.2 ng/ml; G/G: n=19, 34.1±35.7 ng/ml; P=0.008, Fig. 3A). In addition, the required dose of morphine on Day 1 was also significantly lower for the A/A genotype of COMT, compared with the A/G+G/G genotypes (A/A, 30.0±0.0 mg; G/A, 28.9±3.2 mg; G/G, 43.7±21.4 mg; P=0.03, Fig. 3B). On the other hand, the genotype was not correlated with the treatment outcome of morphine on Day 8. Collectively, our results indicate that the COMT genotype is involved in the outcome of morphine treatment, suggesting that it may be useful as a predictive biomarker for morphine treatment.
Figure 3. Catechol-O-methyltransferase genotypes (COMT 472G→A, rs4680, p.Val158Met) and outcome of morphine treatment. (A) Genotypes and plasma concentration of morphine on Day 1. *Comparisons between A/A vs. G/G+G/A of COMT. (B) Genotypes and required dose of morphine on Day 1.

Discussion

Morphine activates opioid receptor signaling in the cells of the central nervous system (CNS). Unlike easily available tissues, such as blood cells, these CNS cells cannot be sampled and used for analysis; therefore, clinically useful pharmacodynamic biomarkers of morphine have remained largely unclear to date. We recently described an approach examining PBLs as surrogate tissues to evaluate drug response and found that it is a feasible, non-invasive and repeatable pharmacodynamic approach in clinical settings (15). In this study, we found that ARRB1 mRNA expression is a reproducible and useful biomarker for monitoring the effects of morphine treatment using PBLs as surrogate tissues.

ARRB1 regulates the desensitization of numerous GPCRs including OPRM1, D1 and D2 dopamine receptors and emerging evidence has demonstrated that ARRB1 functions as a scaffold protein that links GPCRs to intracellular signaling, such as MAPK and as a transcription factor that translocates to the nucleus (16,17). A recent study showed that chronic morphine treatment blocked the agonist-induced redistribution of ARRB1 in stably OPRM1-transfected HEK293 cells through the persistent stimulation of MAPK activity and the authors concluded that chronic morphine treatment produces adaptational changes at the ARRB1 level (18). These observations and our findings suggest that the drug response of PBLs to morphine mediates the down-regulation of ARRB1 expression during morphine treatment and reflects the overall cellular response to opioid signaling in an individual.

COMT is one of the enzymes that inactivate catecholamines; therefore, it is regarded as key regulator of adrenergic, noradrenergic and dopaminergic signaling (19). Various diseases are thought to be involved in COMT function including mental disorders, suicidal behavior and personality traits, and tardive dyskinesia (11,21-23). Regarding the COMT genotype as it relates to cancer pain, individuals with an A/A genotype had a lower regional opioid signal response to pain and a higher sensitivity to pain, compared with heterozygous individuals (24). On the other hand, several clinical studies have demonstrated that the required dose of morphine was lower in subjects with an A/A genotype of COMT, compared with others (25-27). These results are consistent with our result. The question why the required dose of morphine is lower in patients with an A/A genotype, even though they are more sensitive to pain, can be explained by a possibly elevated density of OPRM1 in patients with the A/A genotype (28). Our results indicate that COMT 472G→A may be a predictive biomarker, although further studies are necessary.

Taken together, our results may provide novel insights into the relations between morphine treatment and ARRB1 expression and the COMT 472G→A genotype.

Acknowledgements

This study was supported by the Third-Term Comprehensive 10-Year Strategy for Cancer Control and a Grant-in-Aid for Cancer Research from the Ministry of Health, Labour and Welfare (H22-037). We thank Mrs. Tomoko Kitayama, Mrs. Erina Hatashita, Mrs. Kiyoko Kukwata, Mrs. Haruka Yamaguchi, Mr. Hiromasa Wadaguri and Mrs. Akiko Mizumoto for their technical assistance. We also thank Dr Richard Simon and Dr Amy Peng for providing us with the BRB ArrayTools software.

References