演題名 体表面誘導放射線治療で着用可能な近赤外線透過衣類の開発

演者氏名 平野 駿太 所属先 近畿大学大学院 医学研究科 医学物理学専攻

- ・筆頭著者・共著者の氏名
 平野駿太¹、近藤亮太郎¹、宮﨑直人¹、門前一¹
- ・全著者の所属施設を記載 1: 近畿大学大学院 医学研究科 医学物理学専攻

【背景】

放射線治療において、高精度な患者セットアップは、標的への正確な放射線照射のために不可欠である。従来、患者セットアップの精度を確保するため、皮膚マーキングや画像誘導放射線治療(IGRT)が用いられてきた。しかし、皮膚マーキングは美容上の問題、IGRT は放射線被ばくのリスクを伴うという課題があった。近年、近赤外線プロジェクターと光学カメラを使用し、体表面情報から患者セットアップを行う体表面誘導放射線治療(SGRT)が登場した。このシステムは、被ばくがなく、マーカーレスでの患者セットアップを可能にする。特に、体表面を基準に治療を行う乳がん治療において、その有用性が多数報告されている。しかし、現在の SGRT システムでは、正確な体表面認識のために治療部位の露出が必要であり、乳がん患者にとって心理的負担や羞恥心を伴うという課題がある。そこで我々は、SGRT システムが近赤外線を使用していることに着目し、近赤外線を透過する衣類を開発することで、着衣下での放射線治療が可能になると考えた。本研究の目的は、開発したポリマー素材の近赤外線透過布材が、SGRT システムで使用可能であるかを検証することである。

【方法】

開発布材の近赤外線透過性を評価するため、分光光度計(UV-3600、島津製作所)を用いて、 波長 380~800 nm における全透過率および直進透過率を測定した。サンプルは、開発した 近赤外線透過布材 6 種に加え、比較対象としてバスタオルおよび乳がん放射線治療用ウェ ア(マンマウェア、有限会社クオリタ)の合計 8 種とした。次に、近赤外線プロジェクショ ンを採用している SGRT システム「AlignRT」(VisionRT社)を用い、SGRT 精度管理用胸 部ファントムの左乳房を各サンプルで覆い、体表面の認識が可能であるかを評価した。

【結果】

各サンプルにおける近赤外線(波長: 730 nm)に対する全透過率および直進透過率測定の結果を Table 1 に示す。最も透過率の高かった開発布材の透過率は全透過率で 64.5%、直進透過率で 12.7%であった。また比較対照として測定したバスタオルの全透過率は 17.3%、直進透過率は 0.2%、マンマウェアの全透過率は 13.7%、直進透過率は 0.2%であった。 SGRT システムによる認識評価では、すべてのサンプル(開発布材 6 種、バスタオル、マンマウェア)において体表面の認識が困難であった。対照として、未被覆状態では正常な認識が確認された。

Table 1: 各サンプルにおける近赤外線透過率の測定結果

	バスタ	マンマ	Sample	Sample	Sample	Sample	Sample	Sample
	オル	ウェア	1	2	3	4	5	6
	17.3	13.7	60.1	64.5	27.1	39.7	31.0	47.7
直進透過率 [%]	0.2	0.2	2.0	3.0	3.3	12.7	1.4	2.4

【結論】

開発したポリマー素材の近赤外線透過布材は、全透過率 64.5%、直進透過率約 12.7%を示したものの、SGRT システムでの体表面認識には至らなかった。これは、布材による近赤外線の散乱・反射により、SGRT システムの光学カメラが体表面の微細な形状変化を検出できなかったためと考えられる。着衣下での SGRT 誘導放射線治療の実現には、直進透過率の向上と散乱・反射の抑制が重要であることが明らかとなった。今後は、より透過性の高い素材開発および光学特性の最適化を通じて、乳がん患者の心理的負担軽減と治療精度の両立を目指す必要がある。