Preface

Evidence and Consensus on the Management of Hepatocellular Carcinoma: Update 2015

Masatoshi Kudo

Department of Gastroenterology and Hepatology, Kinki University School of Medicine, Osaka-Sayama, Japan

The 1st Asia-Pacific Primary Liver Cancer Expert (APPLE) meeting was held in Seoul in 2010, followed by the 2nd APPLE meeting in Osaka, the 3rd APPLE meeting in Shanghai, the 4th APPLE meeting in Busan, and the 5th APPLE meeting in Taipei. All of these were extremely successful.

The 6th APPLE meeting was held on July 3–5, 2015, in Osaka, Japan. At this meeting, 118 renowned international and national speakers were invited (table 1), and more than 600 participants from Asia and other parts of the world participated. Highly scientific lectures followed by active discussion made this meeting invaluable. In this supplement issue, some of the presented papers are included.

Arizumi et al. [1] stated that the Assessment for Retreatment with Transarterial Chemoembolization (TACE) [2–4] (ART) scoring system, which was proposed by Sieghart et al. [5], did not demonstrate a sufficiently predictive impact on overall survival among patients who underwent a 2nd TACE session within 90 days [6]. Also, they stated that the application of the ART score should be carefully considered because differences in TACE procedures and post-TACE treatment can affect the results while evaluating overall survival.

Ogawa et al. [7] reported the efficacy of percutaneous ultrasound (US) examination using a novel, real-time virtual sonography method that collates multiple Digital Imaging and Communications in Medicine (DICOM) data sources and displays reference images in color. They concluded that real-time virtual sonography with color display demonstrates utility in increasing operator comprehension of spatial and positional relationships during percutaneous US examination.

Kariyama et al. [8] evaluated the efficacy and safety of radiofrequency ablation [9–11] in treating intermediate-stage hepatocellular carcinoma (HCC). Intermediate-stage HCCs are a very heterogeneous disease. Therefore, several proposals for the subclassification of this stage have been made, such as the subclassifications by Bolondi et al. [12] and Yamakado et al. [13] as well as the Kinki criteria by Kudo et al. [14].

The Kinki criteria recommend that the substage B1 (Child-Pugh score 5, 6 or 7, and a tumor status beyond the Milan and ‘up to 7’ criteria) should be treated by curative treatment option, such as resection or ablation, when the tumor status is relatively limited. Kariyama et al. [8] clearly supported our proposal and stated that even intermediate-stage HCCs can be successfully treated by radiofrequency ablation, with a 5-year survival rate of 80% in patients with multicentric intermediate-stage HCCs.

Minami et al. [15] investigated whether balloon-occluded TACE (b-TACE) can produce a more dense accumulation of iodized oil in various stages of HCC, from single to multiple tumors, to overcome poor local control. They found that b-TACE is effective in the retreatment of HCC, with an insufficient outcome from conventional TACE, but it could not improve the efficacy of treatment for multiple bilobar HCCs.

Tochio et al. [16] stated that the hyperenhanced rim (HER) sign in the postvascular phase of sonazoid-en-
hanced US is found in some of the metastatic liver tumors. They found that Kupffer cells were abundant at the periphery of HER-positive tumors, whereas Kupffer cells were not abundant at the periphery of HER-negative tumors. They concluded that the HER-positive sign in liver metastases could reflect an increase in Kupffer cells in the tumor rim. In addition, the presence of the HER sign was associated with inflammatory cell infiltrates including tumor rim. In addition, the presence of the HER sign was associated with inflammatory cell infiltrates including tumor rim.

Sugimoto et al. [19] analyzed the characteristics of hypovascular and hypervascular well-differentiated HCCs in terms of tumor size, tumor markers [20–22], and detectability by various imaging modalities. They concluded that even though the detectability of hypovascular well-differentiated HCCs by CECT, CEUS, and arterial portography is inferior to that of hypervascular well-differentiated HCC, gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MRI (Gd-EOB-DTPA MRI) could successfully detect the hypovascular HCC, similar to hypervascular HCC. Therefore, Gd-EOB-DTPA MRI is an essential imaging tool to diagnose pathological early HCCs [23].

Arizumi et al. [24] performed a validation study of the subclassification of intermediate-stage HCC. They found that the Kinki criteria [14] are suitable for the subclassification and treatment strategy of the intermediate-stage HCC patients.

Yada et al. [25] introduced newly developed shear wave elastography which increases data reliability by using unique display function. They concluded that the percentage of the net amount of effective shear wave velocity will increase the reliability of the obtained data.

Kim et al. [26] overviewed the recent advances in the management of chronic hepatitis B. First, they concluded that both entecavir (ETV) and tenofovir (TDF) showed long-term efficacy and safety. Second, pegylated interferon resulted in a greater decline in HBV DNA levels and a higher rate of hepatitis B e antigen seroconversion. Third, a combination therapy with interferon plus two analogues did not elevate the rate of sustained responses. Fourth, both EVT and TDF showed efficacy and safety with cirrhosis; ETV especially showed efficacy and safety with decompensated cirrhosis. Finally, suppression of the HCC was observed with ETV and interferon [27].

I believe this supplement issue will be valuable for the readers of Oncology, especially for the hepatologists who are specialized in the management of HCC patients.
References


