# 基礎から学ぶ「再生医療」

# 第20回 血液学を学ぼう!

# 採取部位による

#### 造血幹細胞移植の種類

# 骨髄移植



古くから行われている 最も一般的な方法

ドナーの骨髄から造血幹細胞を採取して移植する方法

## 末梢血幹細胞移植



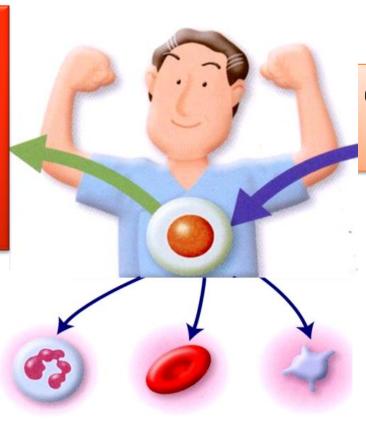
ドナーの末梢血から**造血幹細胞**を 採取して移植する方法

### 臍帯血移植



へその緒の血(さい帯血)を 有効活用する

赤ちゃんの出産後に、へその緒や胎盤に 含まれている**造血幹細胞**を採取して移植 する方法


#### 病気にかかった血液細胞を健康な細胞と取り替える治療法 **造血幹細胞移植とは**

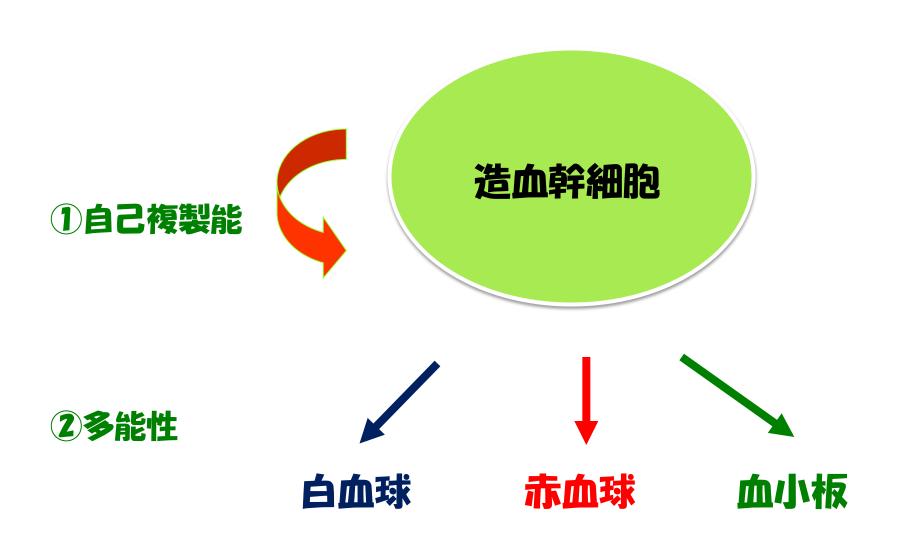
① 病気にかかった血液 細胞を前処置で破壊 する

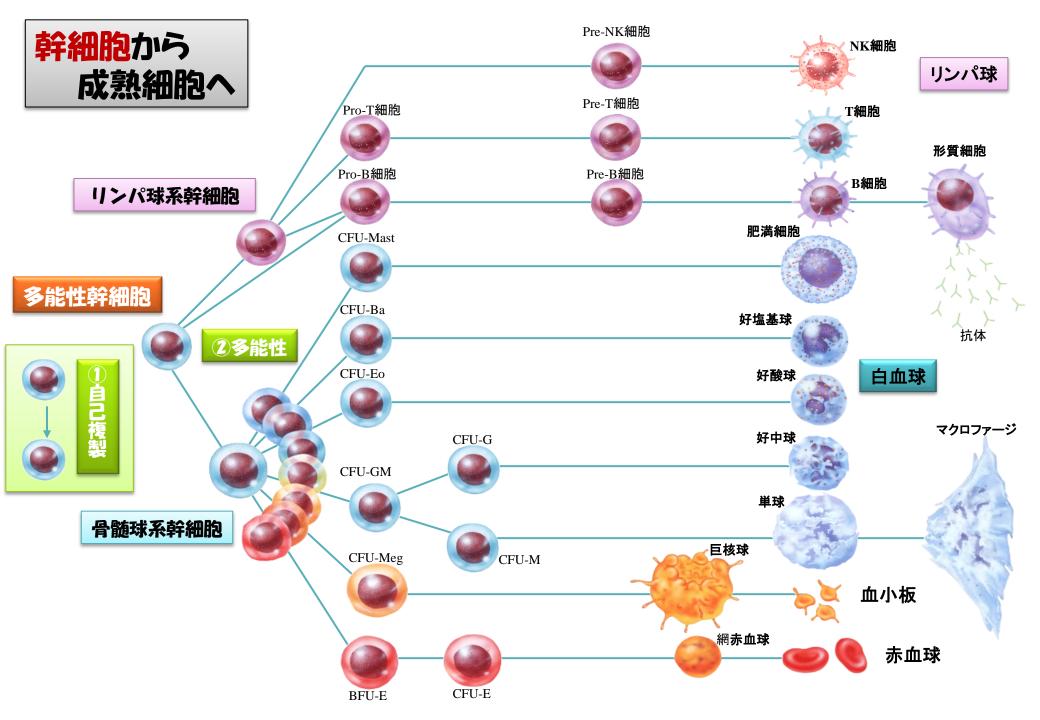
前処置:化学療法剤や

放射線照射

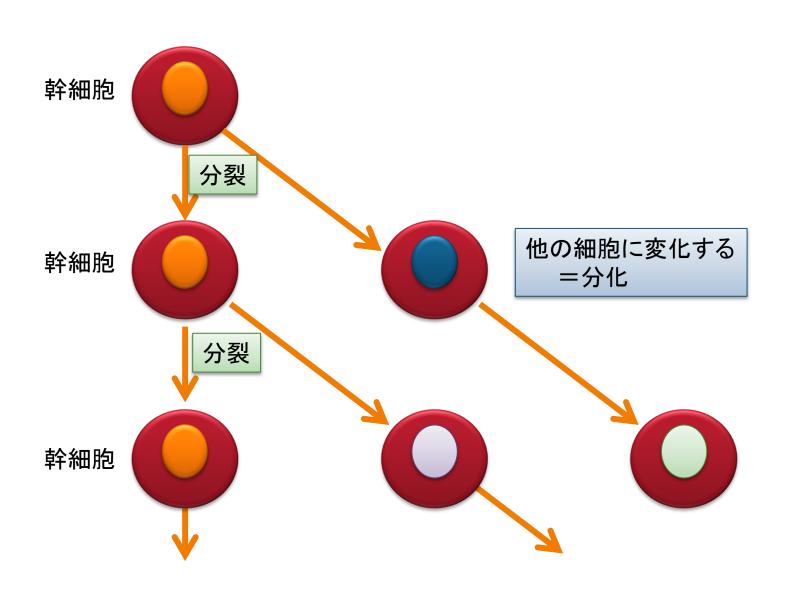








②健康な造血幹細胞を 点滴で移植する

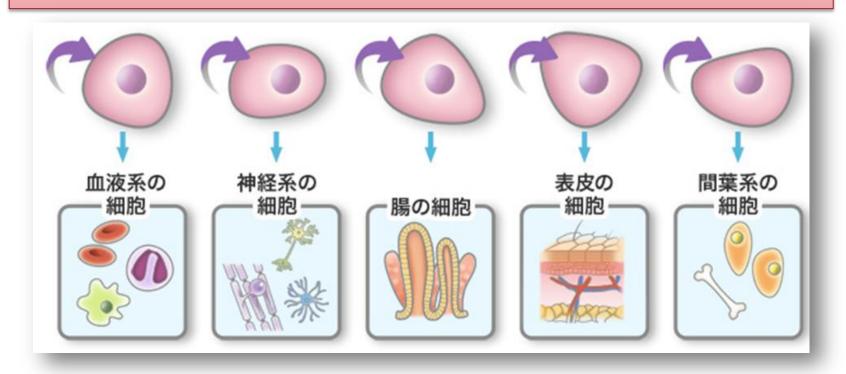



③ 正常な血液細胞が造られる

# 多能性造血幹細胞(stem cell)






# 幹細胞 = 分化する前の状態で存在し、他の種類の細胞を生み出すことができる細胞

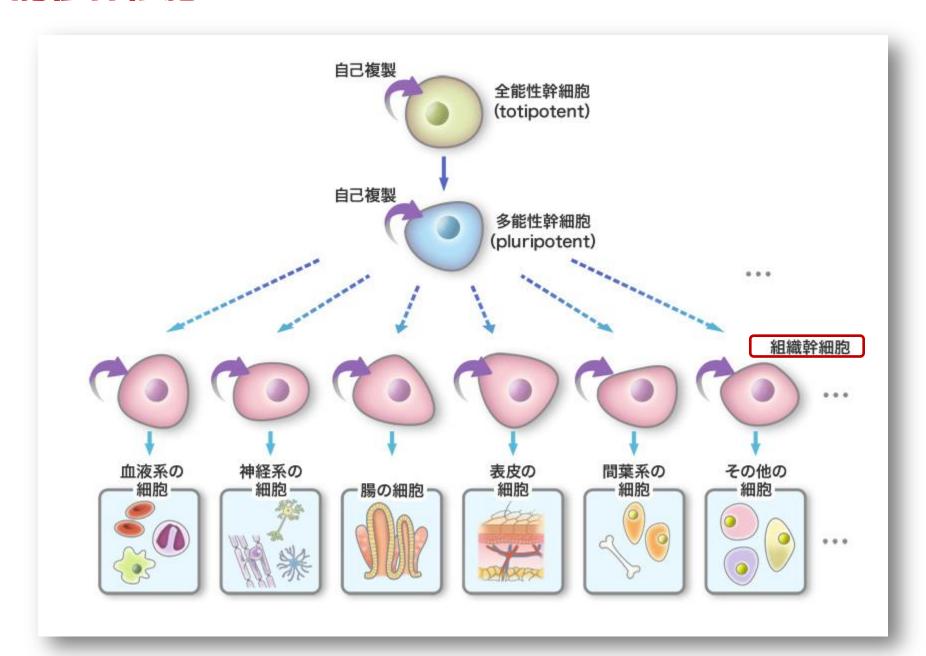


#### ヒトが持っている幹細胞

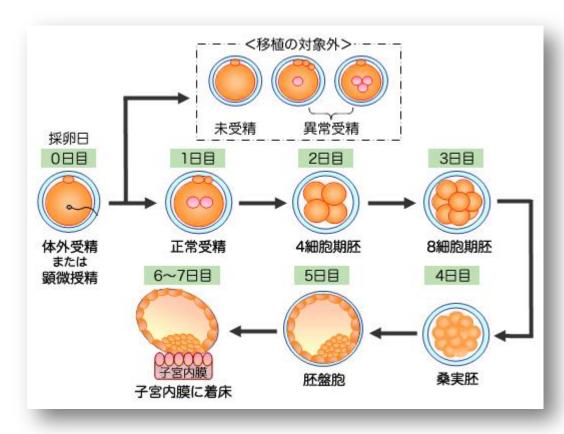
#### 造血幹細胞

神経幹細胞、上皮幹細胞、肝臓幹細胞、生殖幹細胞、骨格筋幹細胞




# 限られた細胞にしか分化しない

#### - 「組織幹細胞」


ここからは 厚生労働省「ヒト幹細胞情報化推進事業」Stemcell Knowledge & Information Portal のHPからたくさん引用させていただいております。ありがとうございます。

# 多能性幹細胞

#### = ひとのからだのどのような細胞でも作り出すことができる

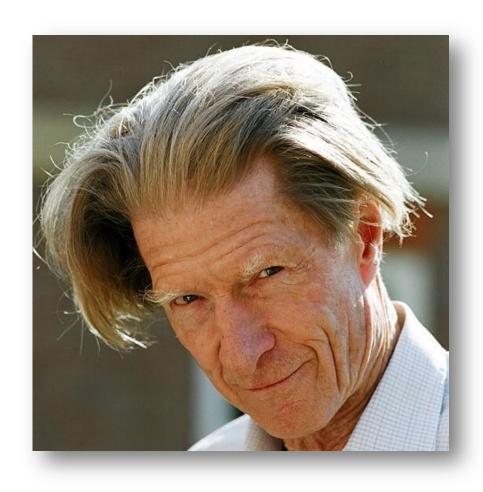


# 受精卵から身体へ

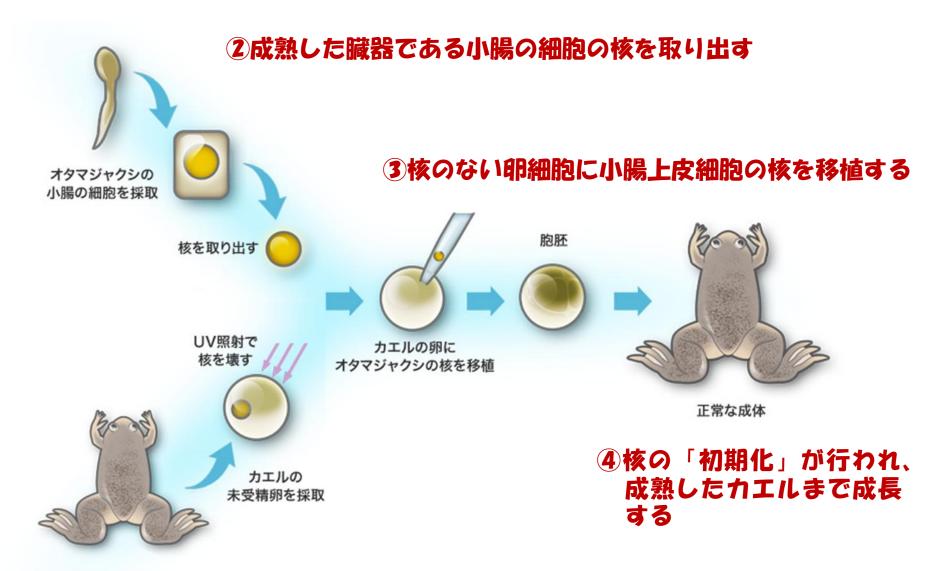


- 1. 受精が完了すると、発生がはじまる。
- 2. 受精卵は、同じDNA配列を複製しながら分裂を繰り返す。
- 3. 分裂を繰り返すにつれて、均一な細胞の集団が不均一な細胞の集団へと変わり、 「胚」へと移行する。
- 4. そして、細胞は将来どんな細胞になるのかという「運命」が徐々に決まっていく。

# 受精卵から身体へ




細胞の運命は、3つに分かれる。


#### ジョン・バートランド・ガードン (Sir John Bertrand Gurdon)

1933年10月2日~。イギリスの生物学者。専門は発生生物学。ケンブリッジ大学名誉教授。

ガードン博士は、体細胞の核移植に よって、皮膚や血液、骨などの個別 の細胞に分化した体細胞が再び 他の細胞になることができる万 能性を取り戻す、いわば細胞の時間 を巻き戻す(初期化)ことができる ことを発見した。



## ジョン・ガードン博士の核移植実験



①紫外線で卵細胞の核を破壊して、核なしの卵細胞をつくる

### カエルから哺乳類へ

ガードン博士の研究から、成熟した細胞からも核移植によって細胞が<mark>初期化</mark> することが示された。

しかし、カエルではうまくいっても<mark>哺乳類</mark>の細胞は初期化できないと考えられていた。



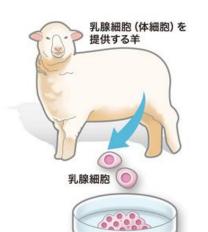
#### イアン・ウィルマット lan Wilmut

国籍:英国

専門:生物学者

肩書:エディンバラ大学名誉教授・再生医学センター

所長 ロスリン研究所教授


生年月日:1944/1/1

経歴:1997年「ネイチャー」に哺乳類で初めて体細胞からのクローン作りに成功し、6歳の羊の体細胞から、全く同じ遺伝子情報を持ったクローン羊・ドリーを誕生させたと発表した。

#### ヒツジA:白い顔

#### ヒツジB:黒い顔

クローン羊ドリー の誕生



培養後、

栄養飢餓状態にして 細胞周期をリセットする





胚盤胞期に代理母の 子宮へ移植する

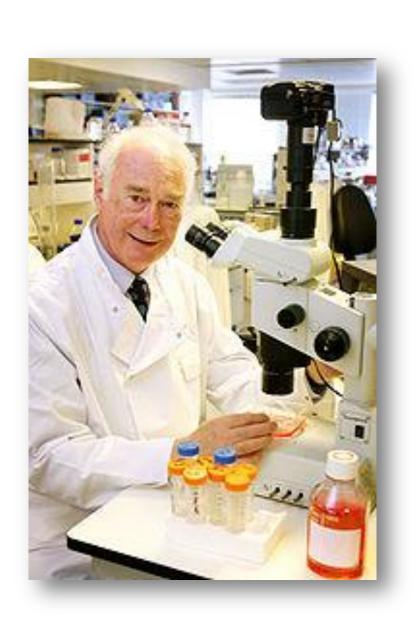
代理母となる雌ヒツジ

①核を取り除く

2ヒツジBの未受精卵に ヒツジAの乳腺細胞 を細胞融合させる 除核後の 未受精卵と電気刺激によって 融合して核移植



クローンヒツジ「ドリー」:白い顔


3白い顔のクローンヒツジが 誕生



乳腺細胞

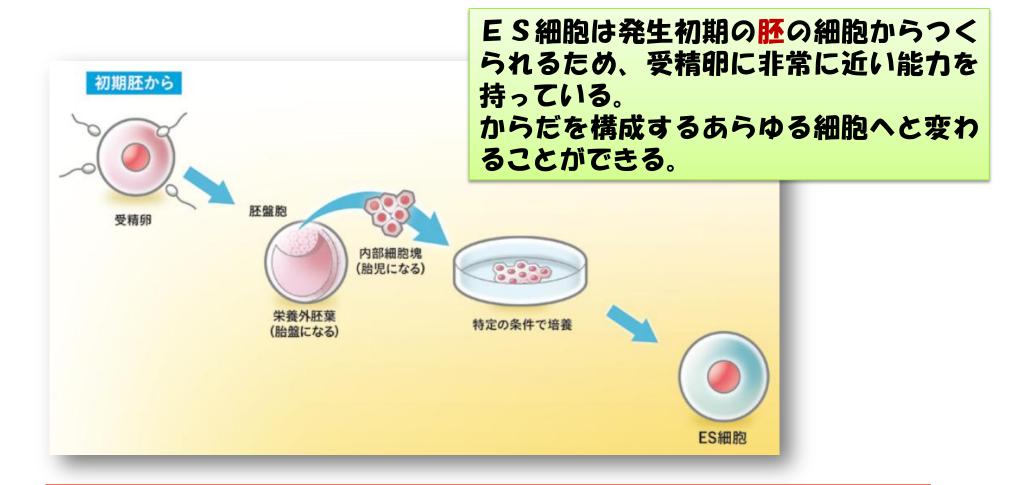
3代理母の子宮へ 移植する

ヒツジC:代理母



# ES細胞

ES: 「Embryonic Stem Cell」の略。

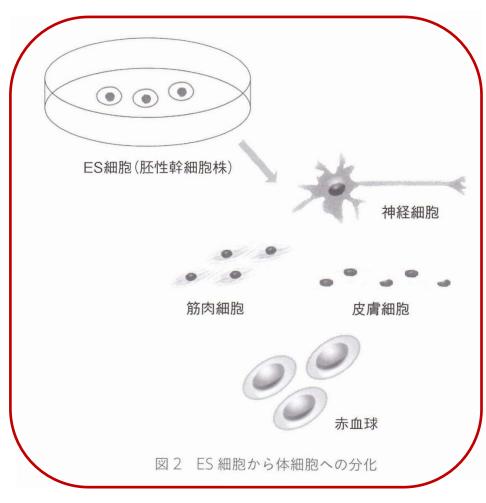

日本語で「胚性幹細胞」。

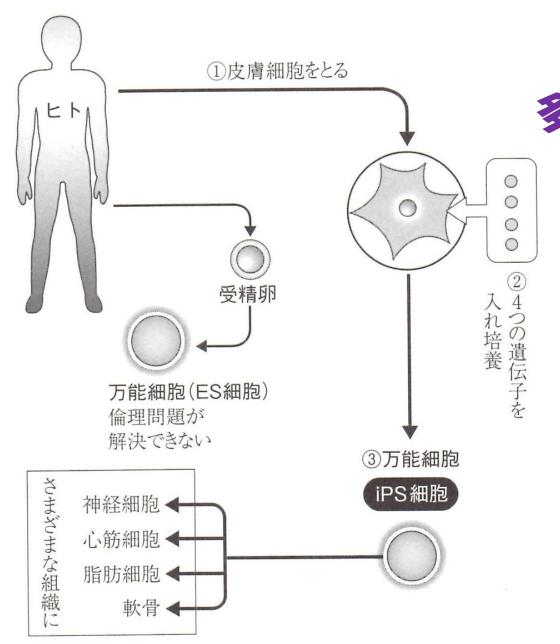
胚の内部細胞塊を用いてつくられた幹細胞。 そのために「万能細胞」と呼ばれることも ある。

1981年にイギリスのエヴァンスがマウスES細胞を樹立した。

マーティン・ジョン・エヴァンズ (Martin John Evans、1941年1月1日〜) イギリスの科学者. 2007年にマリオ・カペッキ、オリヴァー・スミ ティーズとともにノーベル生理学・医学賞を受 賞した。

# ES細胞





胚とは、少し成長した段階の受精卵の名称で、ES細胞は胚盤胞という 着床前の胚の一部の細胞(内部細胞塊)から作られた幹細胞である。

# マウスES細胞からヒトES細胞へ

■ マウスES細胞樹立から17年たった1998年、ウィスコンシン大学の ジェームズ・トムソンによって、ヒトの受精卵からヒトES細胞を 作ったと報告された。

- これによって、細胞の分化研究が ヒトの細胞で再現できることが期 待され、一気に再生医療研究への 期待が高まった。
- しかし、ヒトES細胞を作るためには、ヒト受精卵が必要とされることから、生命倫理の問題が世界中で議論されるようになった。





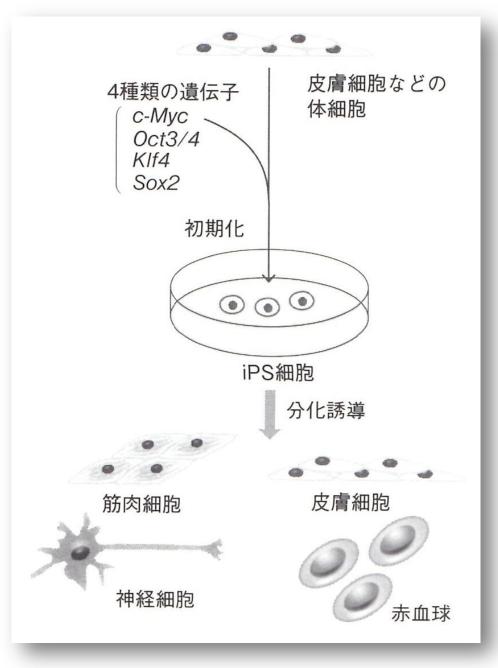
受精卵を使わずに

多能性幹細胞をつくる

iPS細胞

i PS細胞とはなにか 朝日新聞大阪本社




## induced Pluripotent Stem Cell 人工多能性幹細胞

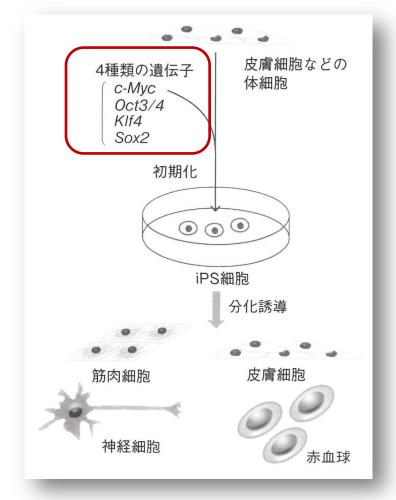
皮膚などのからだのなかにある細胞に、リプログラミング因子と呼ばれている特定の因子群を導入すると、細胞がES細胞と同じくらい若返り、多能性を持つ。

このように人工的に作った多能性幹細胞のことをiPS細胞という。

# iPS細胞の作り方

iPS細胞の作製によって、 ヒトES細胞で懸念されてい た受精卵の破壊を伴わず、体 中の様々な組織の細胞に変化 できる多能性幹細胞を利用で きるようになった。




i PS細胞の世界 京都大学i PS細胞研究所

# i PS細胞 4種類の遺伝子に絞る方法

- ① ヒトの遺伝子は22000種類ある
- ② たまたま理化学研究所がマウスの遺伝子の データベースを公開した
- ③ マウスのES細胞に働く100個の遺伝子に 絞った
- ④ 動物実験で4年かけて24個に絞り込んだ

ここからが困難!

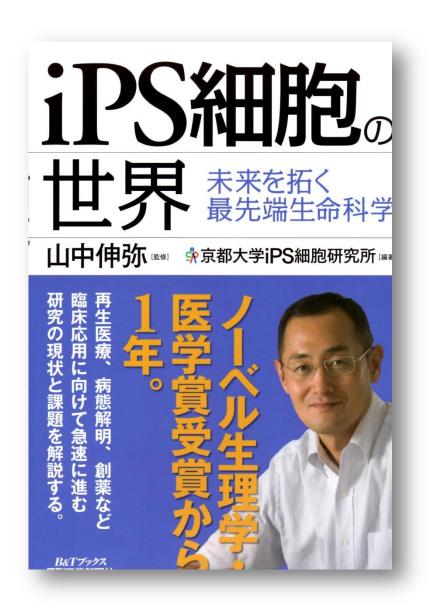
ふつうはひとつひとつ調べるところだが...



i PS細胞の世界 京都大学i PS細胞研究所

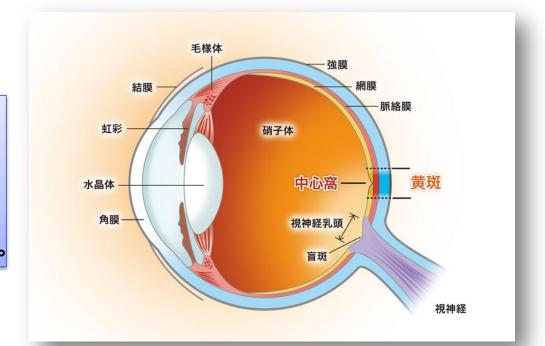
- **⑤ 24個を一度に入れたらES細胞のような細胞塊ができた**
- 6 その後、一つずつ抜いていって、最終的に4つに絞った

# 再生医療への適用


1. 加齢黄斑変性

2. パーキンソン病

3. 脊髄損傷


4. 糖尿病

5. 血液製剤



### 1. 加齢黄斑変性

加齢黄斑変性は、加齢に伴い網膜の 黄斑部が萎縮や変性することにより 発症する目の難病である。欧米では 高齢者の視覚障害の原因の第一位で あり、日本でも第四位となっている。



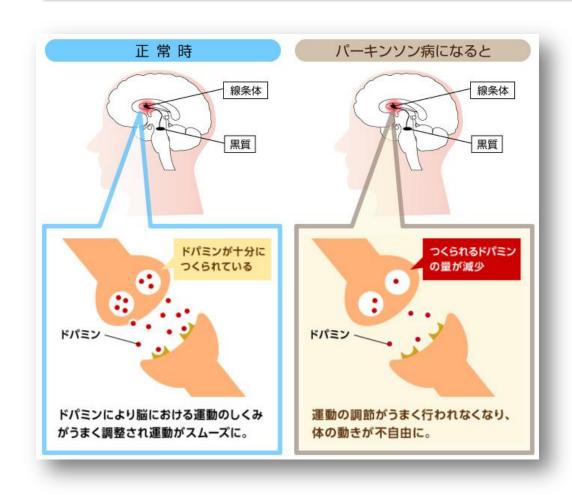
加齢黄斑変性になると、

- ・視野の中心が暗く見える ・物がゆがんで見える
- ・周囲の景色は見えているのに文字が読めない
- ·人の顔が判別できないなどの症状が現れる。

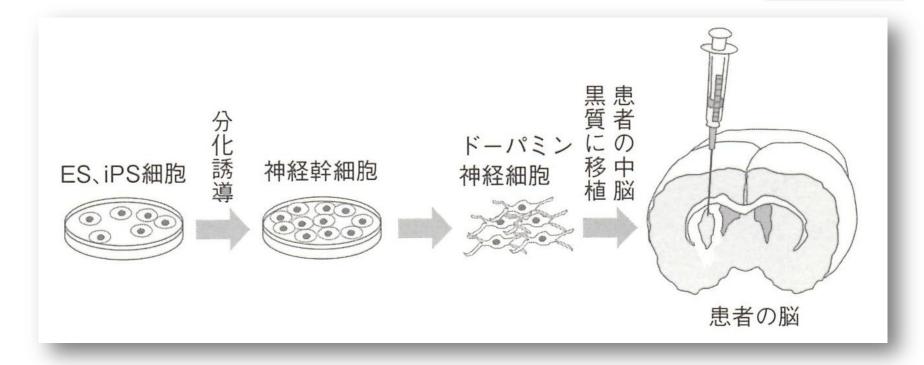


日本においては2014年9月に、患者の皮膚細胞から作製したiPS細胞を網膜色素上皮細胞に分化させ、シート状にしたものを、変性した黄斑部に移植

する臨床研究が実施された。


iPS細胞を用いた臨床試験は世界初である。

高橋政代


(神戸理化学研究所網膜再生医療研究開発プロジェクト代表)

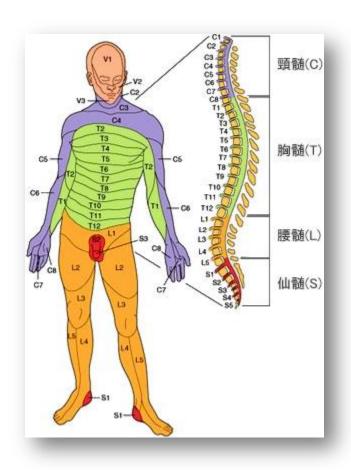
#### 2. パーキンソン病

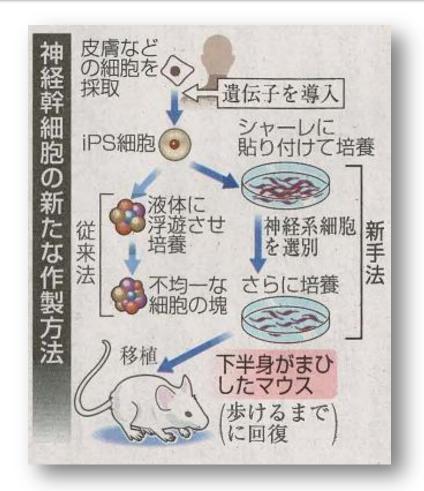
パーキンソン病は、脳の中脳にある黒質と呼ばれる場所にたくさん存在する ドーパミンという神経伝達物質を作る神経細胞のひとつ、ドーパミン産生神経 細胞が失われることが原因で発症する病気である。








まずヒトの皮膚などから採取して作ったiPS細胞から、神経系のおおもとの細胞である神経幹細胞を作る。


さらに治療に必要な細胞であるドーパミン神経細胞を集めて患者の黒質に 移植する。

#### 3. 脊髓損傷

脊髄は、顔以外の運動や感覚のすべてを介する。脳から指令は、必ず脊髄を 経由して末梢神経を通り、手や足などに伝えられる。

脊髄を損傷すると、脊髄の神経線維が切断され、損傷部分から末梢への情報 伝達や、末梢から脳への情報伝達ができなくなる。





### 4. 糖尿病

#### 1型糖尿病と2型糖尿病の相違点

|                      | 1型糖尿病                             | 2型糖尿病                                |
|----------------------|-----------------------------------|--------------------------------------|
| 成因                   | 自己抗体を基礎にした、<br>すい臓β細胞の破壊により<br>発症 | インスリン分泌低下・抵抗性に、運動不足などの環境<br>因子が加わり発症 |
| インスリン<br>分泌能         | 絶対的欠乏                             | 相対的なインスリン インスリン<br>分泌低下や抵抗性 非依存状態    |
| 基本となる治療法<br>と補助的な治療法 | 基本: <b>インスリン療法</b><br>補助:食事と運動    | 基本:食事と運動<br>補助:薬物                    |
| 遺伝的な素因               | 2型の場合より少ない                        | しばしばあり                               |
| 発症年齢                 | 小児〜思春期が多いが、<br>中高年でも認める           | 40 歳以上に多いが、<br>若年発症も増加               |
| 肥満度                  | 関係なし                              | 肥満または肥満既往が多い                         |
| 膵島関連<br>自己抗体         | GAD抗体、I CA、I A-2、<br>I AAに陽性率が高い  | 陰性                                   |

iPS細胞を用いてβ細胞をつくる

#### 5. 血液製剤

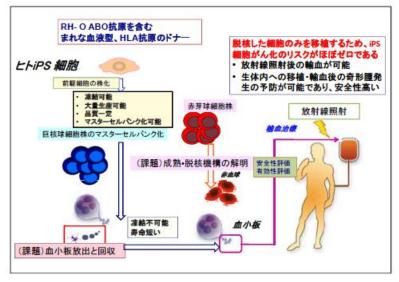
#### 研究成果① 献血に依存しない輸血用血液細胞の誘導開発



京都大学 iPS細胞研究所 教授 **江藤 浩之** 

#### 【概要】iPS細胞から血小板や赤血球などの輸血製剤を作製する

- ドナー献血に依存しない血液製剤(血小板、赤血球など)の安定供給
- 感染リスクの排除
- 特殊なHLAタイプ(繰り返し血小板を輸血しなければならない患者)、まれ血(ABO型以外のまれな血液型による赤血球輸血患者)ドナーの減少に対応し、ドナーの負担を永遠になくす
- 血小板や赤血球は、放射線照射後に輸血を行うので、未分化iPS細胞混入に伴う奇形腫発生やその他の細胞のレシピエント(患者)体内への投与を予防可能


#### 将来のiPS細胞を用いた輸血製剤

マスターセル化した血小板前駆細胞(巨核球)と赤血球前駆細胞(赤芽球)を事前に 品質を検証したiPS細胞から作製すれば、 安定的に品質が一定の輸血用血液が供 給できます。現在までに巨核球および赤芽球の細胞株化を達成しました。

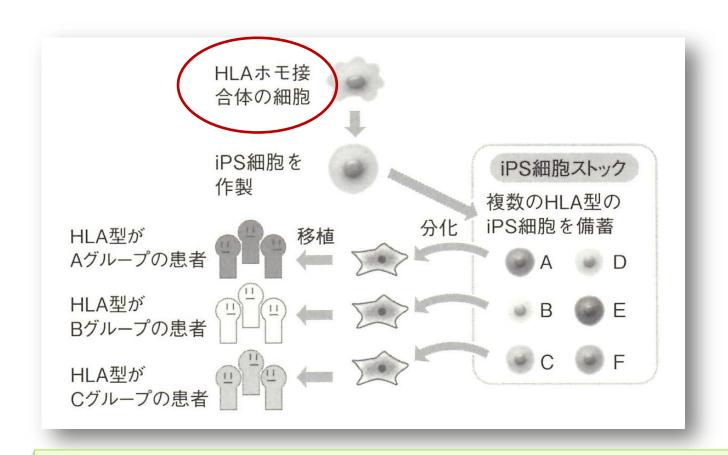


#### ヒトiPS細胞から機能性血小板を誘導

ヒト皮膚線維芽細胞由来iPS細胞を樹立し、 試験管内で血小板へ分化誘導しました。 この血小板は、免疫不全マウスに輸血後、 血管障害部位に集積し、血栓形成に寄与し ました(J Exp Med, 2010)。



# iPS細胞を移植する


# 自家移植と他家移植の比較

|         | 自家移植         | 同種移植(他家移植)                  |
|---------|--------------|-----------------------------|
| 移植する細胞  | 自分の細胞        | 他人の細胞                       |
| 免疫反応    | 起こらない        | 起こる<br>免疫適合型によって変わる         |
| 細胞の品質管理 | 患者ごとに行う必要がある | あらかじめ品質のよい細胞を<br>選んでおくことが可能 |
| 細胞管理の費用 | 患者ごとに必要      | 一定数の細胞株の管理に必要               |

# 再生医療用iPS細胞ストック

- ◆ 患者自身の体細胞から作ったiPS細胞を利用して再生医療を行うと、 免疫拒絶反応が起きない。
- ◆ 他人からの細胞を入れるにはHLAが適合しないと拒絶されてしまう。
- ◆ また、ひとつのiPS細胞株を作製するには莫大な費用と時間がかかる。
- ◆ そこで再生医療用のiPS細胞ストックを用意するという試みがある。

# 再生医療用iPS細胞ストック



#### ヘテロ接合体

A3 A29 B7 B57 DR3 DR8

#### ホモ接合体

A3 A3 B7 B7 DR3 DR3

患者のHLA型と類似するタイプのiPS細胞を選び、目的の細胞に分化させてから移植する。

拒絶反応が少ない移植が実現する。

# i PS細胞の開発・応用にいたる関連研究の歩み

| 1938年 | シュペーマン  | 核移植実験のアイデア      |
|-------|---------|-----------------|
| 1962年 | ガードン    | カエルの体細胞クローンを作製  |
| 1981年 | エバンズ    | マウスでES細胞を作製     |
| 1997年 | ウィルムット  | クローンヒツジの作製      |
| 1998年 | トムソン    | LhES細胞作製        |
| 2001年 | 多田      | 体細胞とES細胞の融合実験   |
| 2006年 | 山中      | マウスでiPS細胞作製     |
| 2007年 | 山中      | ヒトでiPS細胞作製      |
| 2012年 | ガードン・山中 | ノーベル生理学・医学賞     |
| 2014年 |         | iPS細胞で細胞治療の臨床研究 |